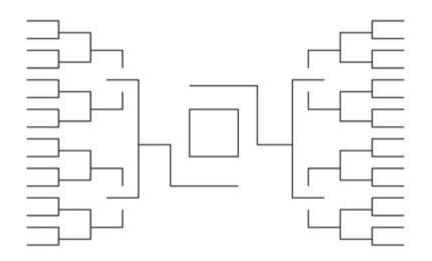


## Experimentelle Wirtschaftsforschung Universität Karlsruhe (TH)

# Tournaments and Piece Rates: An Experimental Study



Präsentiert von: Christian Preuß, Janine Schweda, Sonja Worch



#### Tournaments and Piece Rates – Die Idee

#### . (Rangfolge-)Turnier

- Nichtkooperatives Spiel
- Auszahlung abhängig von relativer Anstrengung
- Beispiele: Sport, Wahlen



#### . Stücklohnsystem

- Mengenleistung ist Leistungskennzahl
- Hier: als Vergleichsbasis zum Turnier

### . Idee: Überprüfen von Anreizsystemen

- o Wählen die TN im Experiment gemäß der theoretischen Vorhersage?
- o Falls nicht: Optimalität der theoretischen Lösung in Frage stellen!

#### Agenda:







## Turniertheorie (symmetrischer Fall)

e Anstrengung

Auszahlung (M oder m)

M Gewinnerauszahlung

m Verliererauszahlung

ε Störgröße ~ Gl[-a,a]

a,c Parameter

Nutzenfunktion 
$$U_i(p,e) = U_i(p,e) = u(p) - c(e)$$

Gewinnerwartung 
$$Ez(e_i,e_j) = \prod(e_i,e_j) \ u(M) + [1-\prod(e_i,e_j)] \ u(m) - c(e_i)$$

Output 
$$y_i = f(e_i) + \varepsilon_i$$

Siegwahrscheinlickeit 
$$P(y_i>y_j) \Leftrightarrow P(\varepsilon_i-\varepsilon_j>f(e_j)-f(e_i))$$

Vereinfachungen 
$$u(p) = p$$
  
 $c(e_i) = e_i^2/c$   
 $f(e_i) = e_i$ 

Gewinn-Maximierung liefert optimalen Anstrengungsgrad

$$e^* = \frac{(M - m)c}{4a}$$

Im asymmetrischen Fall:  $e_i^* = 4a(M-m)c/[16a^2+(M-m)c]$  und  $e_j^* = 2a(M-m)c/[16a^2+(M-m)c] = e_i^*/2$ 





## Hypothesen

#### Zu Testen sind 7 Hypothesen:

**H1a**: Gleichgewichts - Hypothese, strenge Form ( $\sigma^2=0$ )

**H1b**: Gleichgewichts - Hypothese, schwache Form  $(e_{beob} = e^*)$ 

**H2**: Invarianz – Hypothese (bzgl. Parameteränderungen, die e\* konstant halten)

**H3**: Benachteiligter - Turnierteilnehmer - Hypothese ( $e_{beob,asym} = e_{asym}^*$ )

**H4:** Informations – Hypothese (Invarianz gegen Kennen des Output und Rang)

**H5**: Stücklohn – Gleichheit (Anstrengung in Turnier und Stücklohnsystem gleich)

**H6**: Varianz – Hypothese (Var(Turnier) > Var(Stücklohn))





#### Formale Merkmale

• **Anzahl:** 10 Experimente

• **Zeitpunkt:** etwa um 1986 (Paper erschien 1987)

• Runden: ein Experiment mit 25 Runden

9 mit jeweils 12 Durchgängen

• Teilnehmer: 225 Studenten aus Wirtschaftskursen der Universität New

York

- · Verwendung neutraler Begriffe in der Experimentbeschreibung
- jeder Student wurde nur einmal eingeladen
- kurzer Zeitraum, in dem die Experimente stattfanden

• Ergebnisse der letzten Runde wurden für die Auswertung benutzt





$$e^* = \frac{(M - m)c}{4a}$$

#### EXPERIMENTAL DESIGN OF TOURNAMENT EXPERIMENTS

| Experiment                                                   | Decision<br>Number<br>Range            | Decision<br>Cost<br>Function                                                                          | Random<br>Number<br>Range                        | Prizes                   | Prize<br>Spread<br>(M - m) | Output<br>Function                  | Infor-<br>mation    | Number<br>of<br>Rounds | Equilibrium              | Number<br>of<br>Subjects |
|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|----------------------------|-------------------------------------|---------------------|------------------------|--------------------------|--------------------------|
| Narrow ran-<br>dom number<br>range<br>(baseline)             | $e_i \in (0, \dots, 100)$<br>i = 1, 2  | $\frac{e_i^2}{10,000}$ $i = 1, 2$                                                                     | $\epsilon_i \in (-40, \dots, +40)$ $i = 1, 2$    | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | Low                 | 12                     | $e_i = 37$ $i = 1, 2$    | 34                       |
| 2. Equilibrium<br>74                                         | $e_i \in (0, \ldots, 100)$<br>i = 1, 2 | $\frac{e_i^2}{16,000}$ $i = 1, 2$                                                                     | $\epsilon_i \in (-40, \dots, +40)$<br>$i = 1, 2$ | M = \$1.59<br>m = \$0.85 | .74                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | Low                 | 12                     | $e_i = 74$<br>$i = 1, 2$ | 24                       |
| 3. Wide random<br>number<br>range                            | $e_i \in (0,, 100)$<br>i = 1, 2        | $\frac{e_i^2}{20,000}$                                                                                | $ \epsilon_i \in (-80, \ldots, +80) $ $i = 1, 2$ | M = \$1.02<br>m = \$0.43 | .59                        | $y_i = e_i + \epsilon_i  i = 1, 2$  | Low                 | 12                     | $e_i = 37$ $i = 1, 2$    | 24                       |
| 4. Asymmetric costs                                          | $e_i \in (0, \ldots, 100)$<br>i = 1, 2 | $i = 1, 2 \\ e_i^2 \\ \hline 25,000 \\ 2e_i^2$                                                        | $\epsilon_i \in (-40, \ldots, +40)$<br>i = 1, 2  | M = \$1.60<br>m = \$0.80 | .80                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | Low                 | 12                     | $e_1 = 70$ $e_2 = 35$    | 22                       |
| 5. Medium in-<br>formation<br>(total number                  | $e_i \in (0, \ldots, 100)$<br>i = 1, 2 | $   \begin{array}{r}     25,000 \\     e_i^2 \\     \hline     10,000 \\     i = 1, 2   \end{array} $ | $\epsilon_i \in (-40, \ldots, +40)$ $i = 1, 2$   | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | Medium              | 12                     | $e_i = 37$ $i = 1, 2$    | 26                       |
| revealed) 6. High infor- mation (deci- sion number revealed) | $e_i \in (0, \ldots, 100)$<br>i = 1, 2 | $\frac{e_i^2}{10,000}$ $i = 1, 2$                                                                     | $\epsilon_i \in (-40, \ldots, +40)$<br>i = 1, 2  | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | High                | 12                     | $e_i = 37$ $i = 1, 2$    | 28                       |
| 7. Automaton<br>37 (decision<br>number not                   | $e_i \in (0, 100)$                     | $\frac{e_i^2}{10,000}$                                                                                | $\epsilon_i \in (-40, \ldots, +40)$              | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$            | Low auto-<br>maton  | 12                     | $e_i = 37$<br>$i = 1, 2$ | 17                       |
| revealed) 8. Automaton 37 (decision number re-               | $e_i \in (0, 100)$                     | $\frac{e_i^2}{10,000}$                                                                                | $\epsilon_i \in (-40, \ldots, +40)$              | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$            | High auto-<br>maton | 12                     | $e_i = 37$ $i = 1, 2$    | 17                       |
| vealed)<br>9. 25-round ex-<br>periment                       | $e_i \in (0, \dots, 100)$<br>i = 1, 2  | $\frac{e_i^2}{10,000}$                                                                                | $ \epsilon_i \in (-40, \ldots, +40)  i = 1, 2 $  | M = \$1.45<br>m = \$0.86 | .59                        | $y_i = e_i + \epsilon_i$ $i = 1, 2$ | Low                 | 25                     | $e_i = 37$<br>$i = 1, 2$ | 20                       |
| 10. Piece rates                                              | $e_i \in (0,\ldots,100)$               | $i = 1, 2 \\ \frac{e_i^2}{2.000}$                                                                     | $\epsilon_i \in (2, \ldots, +.2)$                | N.A.                     | N.A.                       | $y_i = .2 + .037e_i + \epsilon_i$   | N.A.                | 12                     | $e_i = 37$               | 13                       |





#### A<sub>1</sub> payoff- Kalkulation

| +                  | =                |                | \$1.45 | \$0.86 - | \$            | \$                |
|--------------------|------------------|----------------|--------|----------|---------------|-------------------|
| Decision<br>Number | Random<br>Number | Total<br>1 + 2 | Amt.   | Amt.     | Minus<br>Cost | Total<br>Earnings |
| Col. 1             | Col. 2           | Col. 3         | Col.   | 4        | Col. 5        | Col. 6            |

#### A<sub>2</sub> payoff- Kalkulation

#### SHEET 1: DECISION COSTS TABLE

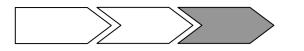
| Column A | Column B | Column A | Column B | Column A | Column B |
|----------|----------|----------|----------|----------|----------|
| Decision | Cost of  | Decision | Cost of  | Decision | Cost of  |
| Number   | Decision | Number   | Decision | Number   | Decision |
| 0        | \$0.0000 | 36       | \$0.130  | 72       | \$0.518  |
| 1        | \$0.0001 | 37       | \$0.137  | 73       | \$0.533  |
| 2        | \$0.0004 | 38       | \$0.144  | 74       | \$0.548  |
| 3        | \$0.0009 | 39       | \$0.152  | 75       | \$0.563  |
| 4        | \$0.002  | 40       | \$0.160  | 76       | \$0.578  |
| 5        | \$0.003  | 41       | \$0.168  | 77       | \$0.593  |





## Das Stücklohnsystem als Vergleichspunkt

- Stücklohnsystem guter Vergleich zu Turnierspielen
- Vergleich der Experimentergebnisse mit Theorie:
  - geringe Abweichung des Stücklohnsystems
  - starke Abweichung der Turnierspiele
    - Spiele sind komplexer als Maximierungsprobleme



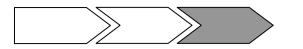


9

## Testergebnisse der Hypothesen

| Hypothese | Testgrundlage    | Ergebnis        | Begründung                                                 |
|-----------|------------------|-----------------|------------------------------------------------------------|
| H1a       | Exp1, Exp2, Exp3 | ablehnen        | $\sigma^2 >> 0$                                            |
| H1b       | Exp1, Exp2, Exp3 | nicht verwerfen | e <sub>i</sub> <sup>k</sup> ->e*, <sub>i=1,2,k=1,2,3</sub> |
| H2        | Exp3, Exp1       | nicht verwerfen | $e_i^3 \approx e_i^1$ , i=1,2                              |
| H3        | Exp4, Theorie    | ablehnen        | $e_1^4 >> e_1$                                             |
|           |                  |                 | $e_2^4 >> e_2$                                             |
| H4        | Exp5, Exp1       | nicht verwerfen | $e_i^5 \approx e_i^1$ , $i=1,2$ ,                          |
|           |                  |                 | $\sigma_{5}^{2} \approx \sigma_{1}^{2}$                    |
| H5        | Exp1, Exp10      | nicht verwerfen | $e_i^{10} \approx e_i^{1}$ , i=1,2                         |
| H6        | Exp1, Exp10      | nicht verwerfen | $\sigma_{10}^2 < 1/3 * \sigma_k^2$                         |
|           |                  |                 | , kÎ{1,9}                                                  |

 $e_i^k$  bezeichnet die durchschnittliche Anstrengung von Spieler i in der 12ten Runde in Experiment k  $\sigma_k{}^2$  bezeichnet die Varianz in Experiment k





## Testergebnisse der Erklärungsansätze

| Erklärungsansatz | Testgrundlage | Ergebnis                                                             |
|------------------|---------------|----------------------------------------------------------------------|
| E1               | Exp6; Exp9    | Varianz ändert sich durch mehr<br>Informationen nicht signifikant    |
| E3               | Exp8          | Lösung deshalb fehlerhaft, da<br>Maximierungsaufgabe zu<br>schwierig |
| E2               | Exp7          | Mutmaßliche Abweichungen des<br>Mitspielers beeinflussen Varianz     |





#### **Fazit**

- Varianz stärker von Art des Spiels, als vom Informationsgrad der Spielteilnehmer abhängig
- Keine Unterscheidung zwischen Turnieren und Maximierungsproblemen in der Theorie
- Theorie für symmetrische Turniere besser anwendbar



#### Kritik

- Einfluss der Gruppengröße: verschieden große Gruppen,
   kleine Gruppen
- Experimentkomplexität: Anstrengungslevel aus {0,..,100} und große Kostentabelle
- Hoher Zufallseinfluss: Zufallsintervalllänge 80
- Folgeexperiment nötig => schlechte Vorbereitung
- Keine Überprüfung genannt, ob TN Regeln verstanden haben



## Weitere Fragen?



## Vielen Dank für die Aufmerksamkeit!